768 research outputs found

    Resolving discrete pulsar spin-down states with current and future instrumentation

    Full text link
    An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates (ν˙)(\dot{\nu}). Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of ν˙\dot{\nu}-variable pulsars to investigate the likelihood of resolving individual ν˙\dot{\nu} transitions. We inject step-changes in the value of ν˙\dot{\nu} with a wide range of amplitudes and switching timescales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on ν˙\dot{\nu} detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programs, we find we are insensitive to a large region of Δν˙\Delta \dot{\nu} parameter space which encompasses small, short timescale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate ν˙\dot{\nu} transition epochs, can improve detectability in certain scenarios. The effects of cadence on Δν˙\Delta \dot{\nu} detectability are discussed and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short timescale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.Comment: 19 pages, 11 figure

    A deep search for pulsar wind nebulae using pulsar gating

    Get PDF
    Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906-49; here we report on non-detections of PWNe towards PSRs B1046-58, B1055-52, B1610-50 and J1105-6107. Our radio observations of the field around PSR B1055-52 argue against previous claims of an extended X-ray and radio PWNe associated with the pulsar. If these pulsars power unseen, compact radio PWN, upper limits on the radio flux indicate that less than 1e-6 of their spin-down energy is used to power this emission. Alternatively PSR B1046-58 and PSR B1610-50 may have relativistic winds similar to other young pulsars and the unseen PWN is resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local ISM density of 2.2e-3 cm^-3 and 1e-2 cm^-3, respectively. Furthermore we constrain the spatial velocities of these pulsars to be less than ~450 km/s and thus rule out the association of PSR B1610-50 with SNR G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.Comment: 10 pages, 5 figures, MNRAS in pres

    Search for Discrete Refractive Scattering Events

    Get PDF
    We have searched for discrete refractive scattering events (including effects due to possible non-multiple diffractive scattering) at meter wavelengths in the direction of two close by pulsars B0950+08 and B1929+10, where we looked for spectral signatures associated with the multiple imaging of pulsars due to scattering in the interstellar medium. We do not find any signatures of such events in the direction of either source over a spectral periodicity range of 50 KHz to 5 MHz. Our analysis puts strong upper limits on the column density contrast associated with a range of spatial scales of the interstellar electron density irregularities along these lines of sight.Comment: Accepted for publication in Astronomy & Astrophysic

    On the Apparent Nulls and Extreme Variability of PSR J1107-5907

    Full text link
    We present an analysis of the emission behaviour of PSR J1107-5907, a source known to exhibit separate modes of emission, using observations obtained over approximately 10 yr. We find that the object exhibits two distinct modes of emission; a strong mode with a broad profile and a weak mode with a narrow profile. During the strong mode of emission, the pulsar typically radiates very energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with apparent nulls over time-scales of up to a few pulses at a time. Emission during the weak mode is observed outside of these strong-mode sequences and manifests as occasional bursts of up to a few clearly detectable pulses at a time, as well as low-level underlying emission which is only detected through profile integration. This implies that the previously described null mode may in fact be representative of the bottom-end of the pulse intensity distribution for the source. This is supported by the dramatic pulse-to-pulse intensity modulation and rarity of exceptionally bright pulses observed during both modes of emission. Coupled with the fact that the source could be interpreted as a rotating radio transient (RRAT)-like object for the vast majority of the time, if placed at a further distance, we advance that this object likely represents a bridge between RRATs and extreme moding pulsars. Further to these emission properties, we also show that the source is consistent with being a near-aligned rotator and that it does not exhibit any measurable spin-down rate variation. These results suggest that nulls observed in other intermittent objects may in fact be representative of very weak emission without the need for complete cessation. As such, we argue that longer (> 1 h) observations of pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Neutron star glitches have a substantial minimum size

    Get PDF
    Glitches are sudden spin-up events that punctuate the steady spin down of pulsars and are thought to be due to the presence of a superfluid component within neutron stars. The precise glitch mechanism and its trigger, however, remain unknown. The size of glitches is a key diagnostic for models of the underlying physics. While the largest glitches have long been taken into account by theoretical models, it has always been assumed that the minimum size lay below the detectability limit of the measurements. In this paper we define general glitch detectability limits and use them on 29 years of daily observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We find that all glitches lie well above the detectability limits and by using an automated method to search for small events we are able to uncover the full glitch size distribution, with no biases. Contrary to the prediction of most models, the distribution presents a rapid decrease of the number of glitches below ~0.05 μ\muHz. This substantial minimum size indicates that a glitch must involve the motion of at least several billion superfluid vortices and provides an extra observable which can greatly help the identification of the trigger mechanism. Our study also shows that glitches are clearly separated from all the other rotation irregularities. This supports the idea that the origin of glitches is different to that of timing noise, which comprises the unmodelled random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA

    A search for radio pulsars and fast transients in M31 using the WSRT

    Get PDF
    We present the results of the most sensitive and comprehensive survey yet undertaken for radio pulsars and fast transients in the Andromeda galaxy (M31) and its satellites, using the Westerbork Synthesis Radio Telescope (WSRT) at a central frequency of 328 MHz. We used the WSRT in a special configuration called 8gr8 (eight-grate) mode, which provides a large instantaneous field-of-view, about 5 square degrees per pointing, with good sensitivity, long dwell times (up to 8 hours per pointing), and good spatial resolution (a few arc minutes) for locating sources. We have searched for both periodicities and single pulses in our data, aiming to detect bright, persistent radio pulsars and rotating radio transients (RRATs) of either Galactic or extragalactic origin. Our searches did not reveal any confirmed periodic signals or bright single bursts from (potentially) cosmological distances. However, we do report the detection of several single pulse events, some repeating at the same dispersion measure, which could potentially originate from neutron stars in M31. One in particular was seen multiple times, including a burst of six pulses in 2000 seconds, at a dispersion measure of 54.7 pc cm^-3, which potentially places the origin of this source outside of our Galaxy. Our results are compared to a range of hypothetical populations of pulsars and RRATs in M31 and allow us to constrain the luminosity function of pulsars in M31. They also show that, unless the pulsar population in M31 is much dimmer than in our Galaxy, there is no need to invoke any violation of the inverse square law of the distance for pulsar fluxes.Comment: 18 pages, 14 figures, 8 tables. Accepted for publication in the main journal of MNRA

    X-ray Observations of XSS J12270-4859 in a New Low State: A Transformation to a Disk-Free Rotation-Powered Pulsar Binary

    Get PDF
    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270--4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing "redback" system that hosts an active rotation-powered millisecond pulsar. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.5' from XSS J12270--4859 is unlikely to be associated, and is probably a previously uncatalogued galaxy cluster.Comment: 8 pages, 6 figures; accepted for publication in the Astrophysical Journa
    corecore